Micronutrient deficiency in the soil, enhanced byexcessive rain or app การแปล - Micronutrient deficiency in the soil, enhanced byexcessive rain or app จีน วิธีการพูด

Micronutrient deficiency in the soi

Micronutrient deficiency in the soil, enhanced by
excessive rain or application of fertilizers, leads to
drastically reduced yields (Konkol et al., 2012). Xie et al.
(2011) noted that applications of Nitrogen (N),
Phosphorus (P) and Potassium (K) fertilizers affected
soil properties, where N increased corn shoot Cu
concentration and P decreased availability of Copper
(Cu) and Lead (Pb). Wozniak and Makarski (2012)
reported that 90 kg N ha−1 improved uptake of K, Iron
(Fe), Zinc (Zn) and Cu, while high rates at 150 kg N ha−1
increased concentrations of grain Manganese (Mn) in
wheat (Triticum aestivum L.).
Although P may help increase grain yield, excess
of this nutrient decreased Zn and enhanced Fe, Cu and
Mn uptake in wheat biomass (Zhang et al., 2012).
Hassan et al. (2012) observed increased P uptake in
cereal crops planted after legumes.
Deficiencies of Zn, Fe and Fe decrease wheat
yields in light soils, so application of these
micronutrients may help to increase yields of
susceptible wheat cultivars (Narwal et al., 2012).
Micronutrients Fe and Mn are important to plants, but
antagonistic relationship between these nutrients may
occur during uptake (Moosavi and Ronaghi, 2011).
Kobraee and Shamsi (2011a) noted that micronutrient
concentrations changed during growing season of
soybeans from R1 (beginning bloom) to R8 (full
maturity) stages with Fe decreasing in leaves and
stems faster than other nutrients. Micronutrients Zn,
Fe and Mn were translocated from stems to leaves and
Fe moved to seeds when soybeans were getting closer
to R8 stage (Kobraee and Shamsi, 2011b).
Nutrient availability also depends on production
practices. Ciolek et al. (2012) observed that wheat from
organic farming had greater concentrations of Mn, Fe,
Zn, calcium (Ca) and magnesium (Mg) than
conventional program. The N, P, K, Mg, Mn, Zn and Cu
nutrients in wheat were higher after inoculating grains
with different bacteria (Eleiwa et al., 2012).
Deficiency of Zn is a common problem in different
regions (Ghandilyan et al., 2012). Optimum soybean
yield can be obtained when Zn and P concentrations
in the soil are greater than extension recommendations
(Anthony et al., 2012a). Han et al. (2011) added that
soybean growth was mostly positively correlated with
Zn fertilizer. Soybean yield increased with Zn
fertilization, even in soils at above critical levels, so
recommendations for Zn need to be revised
(Inocencio et al., 2012).
Sulfur (S) and Fe affected Zn and Cu uptake in wheat
grain (Wang et al., 2013). Nadim et al. (2012) pointed
out that wheat production was improved with Boron (B)
and Fe fertilization. Beside foliar sprays, seed coatings
also improved Zn uptake and soybean yields (Han et al.,
2011). Guareschi et al. (2011) reported that polymer
coating of superphosphate and potassium chloride 15
days prior to planting increased dry matter and grain
yields while no significant differences were reported
with polymer applications at planting. According to De
Figueiredo et al. (2012), polymer-coated
Monoammonium Phosphate (MAP) increased corn
production. Additionally, seed coatings with
temperature-activated polymer may help to protect seeds
against cold soils (Gesch et al., 2012).
Growers need to better understand factors, which
affect soybean yield variability (Anthony et al., 2012a).
Anthony et al. (2012b) noted that fertilizer
recommendations rely on estimating nutrients supplied
and immobilized in the soil, which is important for sitespecific nutrient management. Micronutrients use in the
fertilization program becomes a common practice on
farms, but it is important to conduct more studies
(Goncalves et al., 2011). There is a need to determine
required micronutrient concentrations in soils and plants
for soils with likely deficiencies (Hitsuda et al., 2010).
Little research focused on seed polymer nutrient coating
in soybeans under dryland environments and mostly
insufficient rainfall. According to De Figueiredo et al.
(2012), polymer-coated fertilizer need to be evaluated
for improving efficiency of nutrients. Therefore,
objective of this study was to evaluate polymer
micronutrient seed coating on soybeans under dryland
conditions in Southeastern Coastal Plains.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (จีน) 1: [สำเนา]
คัดลอก!
Micronutrient deficiency in the soil, enhanced byexcessive rain or application of fertilizers, leads todrastically reduced yields (Konkol et al., 2012). Xie et al.(2011) noted that applications of Nitrogen (N),Phosphorus (P) and Potassium (K) fertilizers affectedsoil properties, where N increased corn shoot Cuconcentration and P decreased availability of Copper(Cu) and Lead (Pb). Wozniak and Makarski (2012)reported that 90 kg N ha−1 improved uptake of K, Iron(Fe), Zinc (Zn) and Cu, while high rates at 150 kg N ha−1increased concentrations of grain Manganese (Mn) inwheat (Triticum aestivum L.).Although P may help increase grain yield, excessof this nutrient decreased Zn and enhanced Fe, Cu andMn uptake in wheat biomass (Zhang et al., 2012).Hassan et al. (2012) observed increased P uptake incereal crops planted after legumes.Deficiencies of Zn, Fe and Fe decrease wheatyields in light soils, so application of thesemicronutrients may help to increase yields ofsusceptible wheat cultivars (Narwal et al., 2012).Micronutrients Fe and Mn are important to plants, butantagonistic relationship between these nutrients mayoccur during uptake (Moosavi and Ronaghi, 2011).Kobraee and Shamsi (2011a) noted that micronutrientconcentrations changed during growing season ofsoybeans from R1 (beginning bloom) to R8 (fullmaturity) stages with Fe decreasing in leaves andstems faster than other nutrients. Micronutrients Zn,Fe and Mn were translocated from stems to leaves andFe moved to seeds when soybeans were getting closerto R8 stage (Kobraee and Shamsi, 2011b).Nutrient availability also depends on productionpractices. Ciolek et al. (2012) observed that wheat fromorganic farming had greater concentrations of Mn, Fe,Zn, calcium (Ca) and magnesium (Mg) thanconventional program. The N, P, K, Mg, Mn, Zn and Cunutrients in wheat were higher after inoculating grainswith different bacteria (Eleiwa et al., 2012).Deficiency of Zn is a common problem in differentregions (Ghandilyan et al., 2012). Optimum soybeanyield can be obtained when Zn and P concentrationsin the soil are greater than extension recommendations(Anthony et al., 2012a). Han et al. (2011) added thatsoybean growth was mostly positively correlated withZn fertilizer. Soybean yield increased with Znfertilization, even in soils at above critical levels, sorecommendations for Zn need to be revised(Inocencio et al., 2012).Sulfur (S) and Fe affected Zn and Cu uptake in wheatgrain (Wang et al., 2013). Nadim et al. (2012) pointedout that wheat production was improved with Boron (B)and Fe fertilization. Beside foliar sprays, seed coatingsalso improved Zn uptake and soybean yields (Han et al.,2011). Guareschi et al. (2011) reported that polymercoating of superphosphate and potassium chloride 15days prior to planting increased dry matter and grainyields while no significant differences were reportedwith polymer applications at planting. According to DeFigueiredo et al. (2012), polymer-coatedMonoammonium Phosphate (MAP) increased cornproduction. Additionally, seed coatings withtemperature-activated polymer may help to protect seedsagainst cold soils (Gesch et al., 2012).Growers need to better understand factors, whichaffect soybean yield variability (Anthony et al., 2012a).Anthony et al. (2012b) noted that fertilizerrecommendations rely on estimating nutrients suppliedand immobilized in the soil, which is important for sitespecific nutrient management. Micronutrients use in thefertilization program becomes a common practice onfarms, but it is important to conduct more studies(Goncalves et al., 2011). There is a need to determinerequired micronutrient concentrations in soils and plantsfor soils with likely deficiencies (Hitsuda et al., 2010).Little research focused on seed polymer nutrient coatingin soybeans under dryland environments and mostlyinsufficient rainfall. According to De Figueiredo et al.(2012), polymer-coated fertilizer need to be evaluatedfor improving efficiency of nutrients. Therefore,objective of this study was to evaluate polymermicronutrient seed coating on soybeans under drylandconditions in Southeastern Coastal Plains.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (จีน) 2:[สำเนา]
คัดลอก!
微量营养素缺乏的土壤,通过增强
雨水过多或施肥,导致
大幅度减产(Konkol等,2012)。谢等人
(2011)指出,氮的应用程序(N),
磷(P),钾(K),肥料的影响
土壤性质,其中N增加玉米芽铜
浓度和P降低铜的可用性
(Cu)和铅(Pb )。沃兹尼亚克和Makarski(2012)
报道,90千克氮公顷K,铁的吸收改善
(铁),锌(Zn)和铜,而高利率在150千克氮公顷
增加粮食锰(Mn)浓度
小麦(普通小麦)。
虽然P可以帮助增加产量,过量
这种营养素的下降Zn和增强铁,铜和
锰的吸收在小麦生物质(Zhang等人,2012)。
Hassan等人。(2012)观察到增加磷的摄取
豆类种植后谷类作物。
锌,铁和铁降低小麦的缺陷
轻土壤的产量,因此这些应用程序的
微量营养素可以帮助提高产量
易感小麦品种(Narwal等,2012) 。
微量元素铁和锰是重要的植物,但
可能这些营养素之间的对立关系
中摄取(Moosavi和Ronaghi,2011)发生。
Kobraee和沙姆西(2011A)指出,微量营养素
的生长季变化的浓度
从大豆R1(始盛开)到R8(全
熟)阶段中,与铁减少叶片和
茎比其他营养成分更快。微量元素锌,
铁,锰是从转运到茎和叶
铁搬到种子时,大豆越来越近
至R8阶段(Kobraee和沙姆西,2011B)。
养分的有效性也依赖于生产
实践。Ciolek等。(2012)观察到,从小麦
有机耕作过的锰,铁,浓度更高
锌,钙(Ca)和镁(Mg),比
现有的节目。的氮,磷,钾,镁,锰,锌和铜
的营养素在小麦接种粒后均高于
与不同的细菌(Eleiwa等人,2012)。
锌的缺乏是在不同的一个共同的问题
区域(Ghandilyan等人, 2012)。最佳大豆
产量可以得到当锌和磷的浓度
在土壤大于扩展建议
(Anthony等人,2012A)。Han等。(2011)补充说,
大豆生长大多呈正相关
锌肥。大豆产量随锌
施肥,即使在土壤高于临界水平,因此
需要锌的建议进行修改
(伊诺森西奥等,2012)。
硫(S)和铁影响锌和铜的吸收,小麦
籽粒(Wang等人。,2013)。纳迪姆等。(2012)指出
指出,小麦产量与硼(B)改进
和Fe施肥。除了 ​​叶面喷雾,种子包衣
也提高了锌的吸收和大豆单产(汉等,
2011)。Guareschi等。(2011)报道,聚合物
的过磷酸钙和氯化钾涂层15
日以前播种增加干物质和籽粒
产量虽然没有显著差异报告
与种植在聚合物应用。根据德
菲格雷等。(2012),聚合物包衣的
磷酸一铵(MAP),增加的玉米
产量。此外,种子包衣与
温度活化聚合物可帮助保护种子
抵御寒冷的土壤(Gesch等,2012)。
种植者需要更好地了解的因素,其中
影响大豆产量的变化(安东尼等人,2012A)。
安东尼等人。(2012b)指出,肥料
建议依靠估算供给营养素
和固定在土壤中,这是用于位点特异性营养管理很重要。微量营养素使用在
受精程序变为上的普遍做法
农场,但要进行更多的研究是非常重要的
(贡萨尔维斯等人,2011年)。有必要确定
在土壤中所需的微量营养素的浓度和植物
对土壤可能缺乏(Hitsuda等,2010)。
小的研究集中在晶种聚合物养分涂层
在大豆下旱地环境和大多
降雨不足。根据德菲格雷等人。
(2012),聚合物涂覆肥料需要进行评估
改善营养素的效率。因此,
本研究的目的是评估聚合物
微量营养素种衣剂对旱地大豆下
在条件东南沿海平原。
การแปล กรุณารอสักครู่..
ผลลัพธ์ (จีน) 3:[สำเนา]
คัดลอก!
土壤中的微量营养素缺乏,通过
雨水过多或施肥增强,导致
大幅降低产量(konkol等人。,2012)。谢等人。
(2011)指出,应用氮(N),
磷(P)、钾(K)
肥料影响土壤性质,其中N增加玉米地上部Cu和P
浓度下降的情况
铜(Cu)、铅(Pb)。他和玛卡丝基(2012)
报道90千克氮公顷−1提高对钾的吸收,
铁(Fe),锌(Zn)和铜,而在150千克氮公顷−1
粮锰浓度的增加,高利率(Mn)在
小麦(Triticum aestivum L.)。
虽然P有助于增加粮食产量,这养分降低锌过量
和增强的Fe,Cu和Mn的吸收
小麦生物量(Zhang等人。,2012)。
哈桑等人。(2012)观察
谷类作物后种植豆类磷的吸收增加。
缺乏锌,在光的土壤Fe和Fe减少小麦
产量,所以这些
微量营养素的应用有助于提高
感病小麦品种产量(独角鲸等人。,2012)。
微量元素Fe、Mn是重要的植物,但
这些营养物质之间的对立关系可能
发生在吸收(穆萨维和该,2011)。
kobraee和沙姆西(2011A)指出,微量营养素
浓度改变
大豆在生长季节从R1至R8(初花期)(全
成熟)与铁降低叶片和茎
阶段比其他养分更快。微量元素Zn,Fe和Mn的转运
茎叶和
铁搬到种子当大豆越来越近
至R8阶段(kobraee和沙姆斯,2011B)。
养分的有效性也取决于生产
实践。西奥莱克等人。(2012)观察到,从
有机种植小麦有较高浓度的锰,铁,
锌,钙(Ca)、镁(Mg)比
常规程序。N,P,K,Mg,Mn,Zn和Cu的
营养素在小麦明显不同细菌接种后晶粒
(eleiwa等人。,2012)。
缺乏锌在不同
地区所共同面临的问题(ghandilyan等人。,2012)。
优化大豆产量可当土壤中Zn和P浓度
大于推广建议
(安东尼等人。,2012a)。Han等人。(2011)补充说,
大豆生长与
锌肥大多呈正相关。大豆产量与锌
施肥增加了土壤中,甚至在高于临界水平,所以
建议锌需要修改
(伊诺森西奥等人。,2012)。
硫(S)和Fe的影响锌、小麦
粒铜吸收(Wang等人。,2013)。纳迪姆等人。(2012)指出
,小麦产量提高了硼(B)
铁施肥。在叶面喷洒,种衣剂
也提高了锌的吸收和大豆产量(Han等人。
,2011)。瓜雷斯基等人。(2011)报道,
聚合物涂层的过磷酸钙和氯化钾15
天种植增加干物质和粮食
产量而没有显着差异
报道在种植前聚合物的应用。据德
Figueiredo等人。(2012),聚合物涂层
磷酸一铵(MAP)
增加玉米生产。此外,随着温度的
活性聚合物种子涂层可以帮助保护种子
抵御寒冷的土壤(Gesch等人。,2012)。
种植者需要更好地理解的因素,这
影响大豆产量的变化(安东尼等人。,2012a)
安东尼等人。(2012b)指出,肥
建议依靠提供
和固定在土壤养分评价,这对于定位养分管理是重要的。在
施肥方案使用微量营养素
农场成为一种常见的做法,但它是进行更多的研究
重要(Goncalves等人。,2011)。有一个需要确定
必需的微量营养素浓度在土壤和植物
有可能不足的土壤(hitsuda等人。,2010)。
点的研究主要集中在种子聚合物涂层
营养大豆在干旱环境中,大多
降雨不足。根据De Figueiredo等人。
(2012),聚合物包膜肥料需要评估
提高效率的营养。因此,
本研究的目的是评估聚合物
在东南沿海平原旱地
条件下对大豆营养种衣剂。
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: